
django-redis-metrics Documentation
Release 1.0.0

Brad Montgomery

Jul 19, 2019

Contents

1 Inspiration 3

2 License 5

3 Learn More 7
3.1 Installation . 7
3.2 Usage . 9
3.3 Contributing . 11

4 Indices and tables 13

i

ii

django-redis-metrics Documentation, Release 1.0.0

This app allows you do define various named metrics (such as ‘New Users’, ‘Downloads’, or ‘Purchases’), record
when they happen, and quickly and easily view that information.

Each metric can be assigned to an arbitrary category or given an optional expiration time. Granularity for metrics are
saved daily, weekly, monthly, and yearly by default, but this libary gives you the ability to store event data down to the
second, minute, and hour.

Here’s a sneak peak at how it works:

>>> from redis_metrics.utils import metric
>>> metric("Downloads", category="User Metrics")

See the usage section for more examples.

Contents 1

django-redis-metrics Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Inspiration

This app was inspired by Frank Wiles django-app-metrics. It offers a similar feature set but:

• It is only backed by Redis

• Does not require Celery

• Does not include any Timing

3

django-redis-metrics Documentation, Release 1.0.0

4 Chapter 1. Inspiration

CHAPTER 2

License

This code is distributed under the terms of the MIT license. See the project’s LICENSE.txt file for the full content
of the license.

5

django-redis-metrics Documentation, Release 1.0.0

6 Chapter 2. License

CHAPTER 3

Learn More

3.1 Installation

To get started quickly:

1. Run pip install django-redis-metrics.

2. Adding redis_metrics to your INSTALLED_APPS.

3. Include url(r'^metrics/', include('redis_metrics.urls')) in your URLConf.

3.1.1 Requirements

This app works with Python 3.6+ and is tested with Django 2.x. It also requires redis-py. For support for older versions
of Django, see the 1.7.0 release.

If you’d like to run the tests, install the packages listed in requirements/test.txt, which includes coverage
and mock.

3.1.2 Additional Installation

To install the current version, run pip install django-redis-metrics.

You can also install the development version with pip install -e git://github.com/
bradmontgomery/django-redis-metrics.git#egg=redis_metrics-dev

To use the built-in views, add redis_metrics to your INSTALLED_APPS, and include the following in your Root
URLconf:

from django.urls import re_path, include

re_path(r'^metrics/', include('redis_metrics.urls')),

7

https://github.com/andymccurdy/redis-py
https://github.com/bradmontgomery/django-redis-metrics/releases/tag/v1.7.0

django-redis-metrics Documentation, Release 1.0.0

Then, to view your metrics, visit the /metrics/ url, (i.e. run the development server and go to http://127.0.0.1:8000/
metrics/)

3.1.3 Settings

Starting with version 1.0, this app contains a single setting, REDIS_METRICS, which includes a number of options,
all wich have the following defaults:

REDIS_METRICS = {
'CONNECTION_CLASS': None,
'HOST': 'localhost',
'PORT': 6379,
'DB': 0,
'PASSWORD': None,
'SOCKET_TIMEOUT': None,
'SOCKET_CONNECTION_POOL': None,
'MIN_GRANULARITY': 'daily',
'MAX_GRANULARITY': 'yearly',
'MONDAY_FIRST_DAY_OF_WEEK': False,
'USE_ISO_WEEK_NUMBER': False,

}

Formerly, each of these were separate settings with a REDIS_METRICS_ prefix.

• CONNECTION_CLASS: Optional name of a function which returns an instance of a Redis client.

– If you are using django-redis for caching, for example, then you can set this to 'django_redis.
get_redis_connection' to automatically use whatever django-redis is using to get its Redis
client instances (django-redis supports pluggable back ends for Redis).

– This can also be used to enable the use of Redis clients that support Redis Sentinel (e.g. use django-
redis-sentinel along with django-redis), Redis Clustering or Hiredis, for example.

– You can also create your own class/function that returns a valid Redis client.

– Note that if you specify this setting, then all other Redis-related settings will be ignored (namely
HOST, PORT, DB, PASSWORD, SOCKET_TIMEOUT and SOCKET_CONNECTION_POOL).

• HOST: Hostname of redis server that will contain your metrics data; defaults to ‘localhost’

• PORT: Port of your redis server; defaults to ‘6379’

• DB: Your redis database number to use, defaults to 0

• PASSWORD: Your redis password if needed; defaults to None

• SOCKET_TIMEOUT: Your redis database socket timeout; defaults to None

• SOCKET_CONNECTION_POOL: Your redis database socket connection pool; defaults to None

• MIN_GRANULARITY: The minimum-time granularity for your metrics; default is ‘daily’.

• MAX_GRANULARITY: The maximum-time granularity for your metrics; default is ‘yearly’

• MONDAY_FIRST_DAY_OF_WEEK: Set to True if week should start on Monday; default is False

• USE_ISO_WEEK_NUMBER: Set to True to use ISO calendar weeks (see the isocalendar docs).

3.1.4 Upgrading versions prior to 0.8.x

If you used a version of this app prior to 0.8.0, it’s likely that you’ll run into this error:

8 Chapter 3. Learn More

http://127.0.0.1:8000/metrics/
http://127.0.0.1:8000/metrics/
https://github.com/niwinz/django-redis
https://github.com/niwinz/django-redis
https://github.com/niwinz/django-redis
https://github.com/KabbageInc/django-redis-sentinel
https://github.com/KabbageInc/django-redis-sentinel
https://github.com/niwinz/django-redis
https://docs.python.org/3/library/datetime.html#datetime.date.isocalendar

django-redis-metrics Documentation, Release 1.0.0

WRONGTYPE Operation against a key holding the wrong kind of value

To fix this, run the fix_redis_metrics_keys command, which should migrate data for metrics, gauges, and
categories into the format used by the current version of the app.

3.2 Usage

Use the metric shortcut to start recording metrics.

from redis_metrics import metric

Increment the metric by one
metric('new-user-signup')

Increment the metric by some other number
metric('new-user-signup', 4)

Metrics can also be categorized. To record a metric and add it to a category, specify a category keyword parameter

Increment the metric, and add it to a category
metric('new-user-signup', category="User Metrics")

Metrics can also expire after a specified number of seconds

The 'foo' metric will expire in 5 minutes
metric('foo', expire=300)

You can also reset a metric with the set_metric function. This will replace any existing values for the metric,
rather than incrementing them. It’s api is similar to metric’s.

from redis_metrics import set_metric

Reset the Download count.
set_metric("downloads", 0)

3.2.1 Gauges

There are also gauge’s. A gauge is great for storing a cumulative value, and when you don’t care about keeping a
history for the metric. In other words, a gauge gives you a snapshot of some current value.

from redis_metrics import gauge

Create a gauge
gauge('total-downloads', 0)

Update the gauge
gauge('total-downloads', 9999)

3.2.2 The R class

There’s also an R class which is a lightweight wrapper around redis. You can use it directly to set metrics or gauges
and to retrieve data.

3.2. Usage 9

django-redis-metrics Documentation, Release 1.0.0

>>> from redis_metrics.models import R
>>> r = R()
>>> r.metric('new-user-signup')
>>> r.get_metric('new-user-signup')
{

'second': 0,
'minute': 0,
'hour': 1,
'day': '29',
'month': '29',
'week': '29',
'year': '29'

}

list the slugs you've used to create metrics
>>> r.metric_slugs()
set(['new-user-signup', 'user-logins'])

Get metrics for multiple slugs
>>> r.get_metrics(['new-user-signup', 'user-logins'])
[

{'new-user-signup': {
'second': '0', 'minute': '0', 'hour': '1',
'day': '7', 'month': '7', 'week': '7', 'year': '7'}},

{'user-logins':
'second': '0', 'minute': '0', 'hour': '1',
'day': '7', 'month': '7', 'week': '7', 'year': '7'}},

]

Delete a metric
>>> r.delete_metric("app-errors")

3.2.3 Templatetags

The included templatetags are useful for visualizing your stored metrics.

Load the templatetags in your template:: {% load redis_metric_tags %}

Viewing your data is possible with the built-in views, but these all make use of a number of templatetags to display
metric data and history.

• metrics_since(slugs, years, link_type="detail", granularity=None) Renders a
template with a menu to view a metric (or a list of metrics) for a given number of years. For example:

{% metrics_since "downloads" 5 %} {# downloads for the last 5 years #}

• gauge(slug, maximum=9000, size=200, coerce='float'): Includes a donut chart for the
specified gauge. The maximum represents the largest possible value for the gague, while the size is the size
of the chart in pixels. The coerce parameter tells the template tag how to coerce numeric data. By default values
are converted to floats, but you can include coerce='int' to force values to be listed as integers.:

{% gauge "tasks-completed" 10 size=300 coerce='int' %}

• metric_list generates a list of all metrics.

• metric_detail(slug, with_data_table=False) displays a metric’s current details. This tag will
also generate a table of raw data if the with_data_table option is True.

10 Chapter 3. Learn More

django-redis-metrics Documentation, Release 1.0.0

• metric_history(slug, granularity="daily", since=None, to=None,
with_data_table=False) displays a given metric’s history. The granularity option defines
the granularity displayed, since is a string or datetime object that specifies the date and/or time from
which we start displaying data, the to argument indicates to date or time to which we display data, and
with_data_table controls wether or not raw data is displayed in a table. Examples:

{# dainly signups since Jan 1, 2015 #}
{% metric_history "signups" "daily" "2015-01-01" %}

{# daily signups between Jan 1, 2015 & Jan, 1 2016 #}
{% metric_history "signups" "daily" "2015-01-01" "2016-01-01" %}

{# monthly signups for a given year #}
{% metric_history "signups" "monthly" this_year %}

{# monthly signups for a given year, including data #}
{% metric_history "signups" "monthly" this_year with_data_table=True %}

• aggregate_detail(slug_list, with_data_table=False) is much like metric_detail,
but displayes more than one metric on the chart. The slug_list parameter should be a list of metric slugs
that you want to display.

• aggregate_history(slug_list, granularity="daily", since=None,
with_data_table=False) is similarly like metric_history, but for multiple metrics on once
chart. but displayes more than one metric on the chart. The slug_list parameter should be a list of metric
slugs that you want to display.

3.3 Contributing

Ideas and pull requests are welcome! Please feel free to submit bug reports or pull requests on the github repo.

If you do submit a pull request, please consider running the tests and (if applicable) adding test coverage for your
changes. This project uses travis to automatically run the test suite for all pull requests. There’s also an AUTHORS.
rst file containing all of the people who have contributed code. Please add yourself.

Thank You in advance!

3.3. Contributing 11

https://github.com/bradmontgomery/django-redis-metrics
https://travis-ci.org/bradmontgomery/django-redis-metrics

django-redis-metrics Documentation, Release 1.0.0

12 Chapter 3. Learn More

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

	Inspiration
	License
	Learn More
	Installation
	Usage
	Contributing

	Indices and tables

